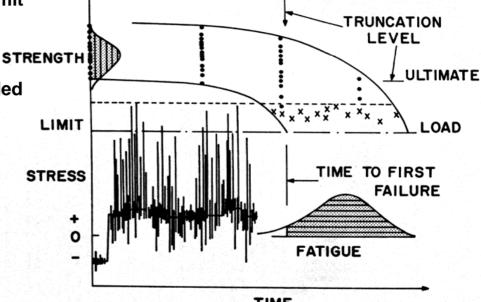
"Managing Damage Threats for Composite Structures: Unifying Durability and Damage Tolerance Perspective" John Halpin (JCH Consultants) and Hyonny Kim (UCSD)

> • Damage Threat Assessment –Technical & Policy AC20-107B –Blunt Impact and Hidden Damage

June 4, 2009. FAA/EASA Meeting. JAL Headquarters, Tokyo

AC20-107B(draft):

7. Proof of Structure-Static. and


8. Proof of Structure - Fatigue and Damage Tolerance.

- "--- When establishing details for the damage tolerance and fatigue attention shall be given to a through damage threat assessment, geometry, inspectability, good design, good design practice, and the types of damage/degradation of the structure under consideration. " page 11
- a. Damage Tolerance Evaluation. Pages 12 & 13
 - (1) A damage threat assessment must be performed
 - (a) -- few industrial standards --
 - (b) Foreign object damage ----
 - (c) Damage classification ----

The Rational for the Use of the B Basis Allowable

(Why can't we design to the mean, vs..... we need an A allowable.)

- Early 1970 concern;
 - Fighter load exceedances above limit load
 - -Composite material scatter grater than metallics.
- Today's definitions of limit load included this aggressive usage
- Typical fighter load spectrum have a Weibull shape parameters $\alpha_{P} \sim 6$
 - (UL 1000 less likely LL)
 - Probability of exceeding UL of 0.001
- Typical Weibull material shape parameters;
 - $-\alpha_{R}$ ~ 25 Aluminum (5% COV)
 - $\alpha_{\rm R}$ ~ 20 Graphite High Strain Fiber composites (6.2% COV)
- Risk of failure (probability of large exceedances occurring with low strength item);
 - 1.5x10⁻³ for Graphite composites
 - 1.0x10⁻³ for Aluminum structure
- COMPARABLE RISKS

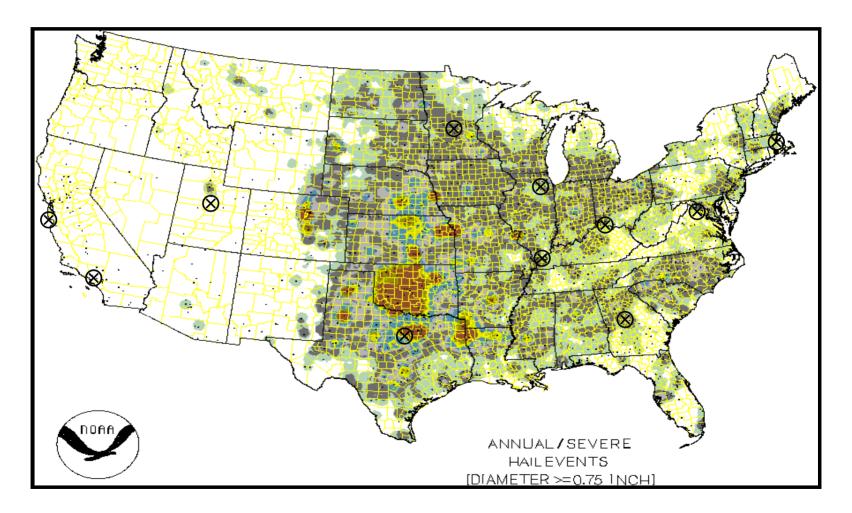
TIME

Transport aircraft have load spectra with less variability (fighter maneuver spectrum are sever)

Status Matrix of Service Induced Impact Damage:

Composite Structures: 3.2.24

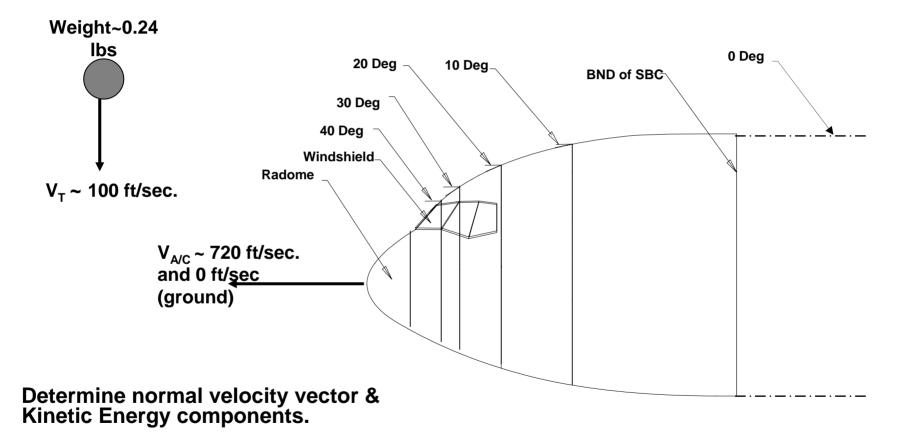
Should Damage Tolerance Threat Requirements be Defined by a "B or A Level Threat Allowable"?


Threat	Test Protocol	Simulation Models	Threat Allowable	Self Evident Event	Impact Location(s); Zones 1 & 2	
Bird Strike	Gel-pack	Yes	"B" FAR's (Wt. & Vel.)	Yes	YES	
Hail	Simulated Hail Ice, SHI?	Yes Maturing	"B" Up-date MIL HDBK 310	Yes	YES	
Runway Debris	Lead Ball ? Drop-tower?	?	"B" Up-date JSSG-2006 ?	Sometimes	Usually	
Tire Rupture	Rubber Puck	?	AC25.963-1	Yes	YES	
Panels Lost In-flight	?	?	?	Yes	Sometimes	
Tool-drop	Steel or Aluminum Hemisphere Drop-tower	?	JSSG-2006 Structures	Sometimes	Yes	
Incidental Contact With Ground Vehicles	TBD	TBD	TBD	Sometimes ?	Yes	
Others? Lighting Strike						

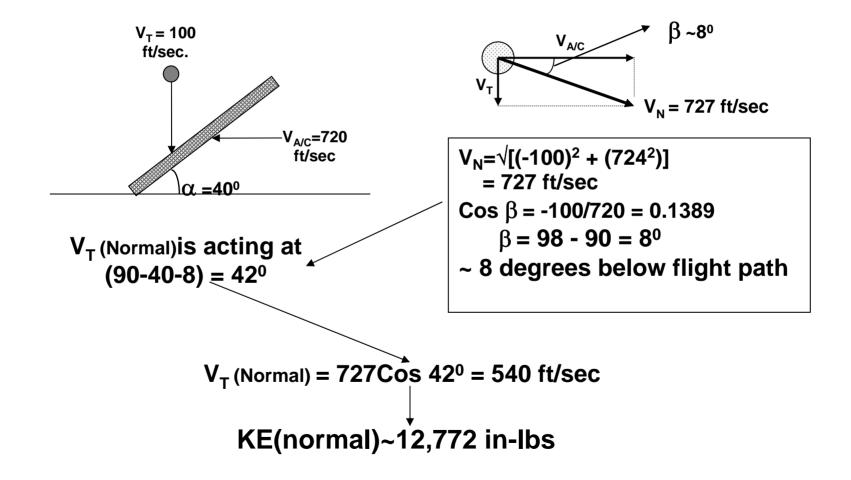
 Hail Stone Growth Is Enhanced in Strong Storm Systems, Vertical Wind Gusts Carrying Small Hail Upward Becoming Large Stones. These Storms Generate Lightning, &
Tornados. Extreme Sizes Are Typically Associated With Weather Dangerous for Aviation Aggregates of Smaller Ice Particles.
Four Different Size Distributions Suggested by Data.

overshooting top courtesy NSSI anvil anvil backshear mammatus clouds cumulonimbus flanking line cloud base striations shelf cloud SW NW precipitation precipitation-free base wall cloud Idealized view of a "classic" supercell, looking west

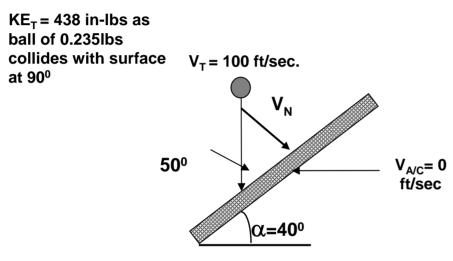
Composite US Hail Threat Data Base for 1955 to 2006 (2829 Reports), Has Been Developed and Is Summarized in the Table



Insert Table Summary for the US Hail Distribution: 1955-2006 Data Base into 12.5.2.3 Ground Hail


	Diameter, inches	Volume, cub inchs	Volume, cc	Mass, gm	Terminal Velocity, m/sec	Mass, Ib.	Terminal Velocity, ft./sec	Kinetic Energy, inch-lbs.	Kinetic Energy, Joules	Cum Probability	Damage Tollerance
	0.25	0.01	0.13	0.12	9.84	0.00027	32.289	0.05	0.01		
	0.50	0.07	1.07	0.97	13.92	0.00213	45.664	0.83	0.09		
	0.75	0.22	3.62	3.26	17.05	0.00718	55.927	4.21	0.48	0.217	
	1.00	0.52	8.58	7.72	19.68	0.01703	64.579	13.31	1.50	0.481	
	1.20	0.90	14.83	13.34	21.56	0.02942	70.743	27.61	3.12	0.647	
	1.25	1.02	16.76	15.08	22.01	0.03326	72.201	32.51	3.67	0.681	
	1.50	1.77	28.96	26.06	24.11	0.05747	79.093	67.41	7.62	0.814	
	1.70	2.57	42.15	37.94	25.66	0.08366	84.201	111.21	12.56	0.883	
	1.75	2.81	45.98	41.39	26.04	0.09126	85.430	124.88	14.11	0.896	
	1.76	2.85	46.78	42.10	26.11	0.09283	85.674	127.76	14.43	0.899	"B Allowable"
	2.00	4.19	68.64	61.78	27.84	0.13622	91.328	213.04	24.07	0.944	
	2.04	4.45	72.84	65.56	28.11	0.14456	92.237	230.60	26.05	0.950	
	2.25	5.96	97.73	87.96	29.52	0.19395	96.868	341.24	38.55	0.971	
	2.40	7.24	118.61	106.75	30.49	0.23539	100.045	441.75	49.91	0.981	1971 Extreme
	2.50	8.18	134.07	120.66	31.12	0.26605	102.108	520.11	58.76	0.985	
	2.75	10.89	178.44	160.60	32.64	0.35412	107.092	761.49	86.04	0.990	"A Allowable"
	2.76	11.01	180.40	162.36	32.70	0.35799	107.287	772.63	87.29	0.993	
	3.00	14.14	231.67	208.50	34.09	0.45974	111.854	1078.49	121.85	0.997	
_	3.25	17.97	294.54	265.09	35.48	0.58452	116.421	1485.48	167.83	0.998	
	3.50	22.45	367.88	331.09	36.82	0.73005	120.816	1998.04	225.75	0.999	2008 Extreme
	3.75	27.61	452.47	407.22	38.12	0.89793	125.057	2633.04	297.49	1.000	
	4.00	33.51	549.13	494.22	39.37	1.08976	129.158	3408.57	385.11	1.000	
	4.25	40.19	658.67	592.80	40.58	1.30712	133.133	4343.98	490.80	1.000	
	4.50	47.71	781.87	703.68	41.75	1.55162	136.993	5459.87	616.87	1.000	

Note:Hailstone Extremes Defined by MBK-310 "GLOBAL CLIMATIC DATA FOR DEVELOPING MILITARY PRODUCTS" as 0.1 percent risk, Gringorten, 1.1. (1972) Hailstone Extremes for Design, AFCRL-TR-72-0081, Air Force Surveys in Geophysics No. 238, AD743831.


Example Problem: Hail impact In-flight and On-ground - 2.4 inch hail (98% Threat)

Example Problem: Hail impact In-flight: Relative Closing Velocity Vector Approach

Comparison: In-Flight and Ground Hail impact

KE_N(TV)= KE_TCos40⁰

= 335 in-lbs

Ground hail impact condition

Ground

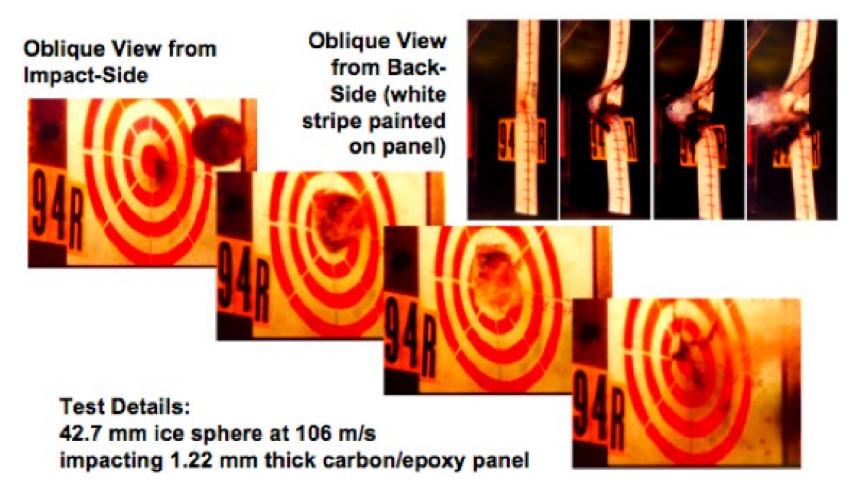
• 90° impact

•KE_T = 438 in-lbs

• 40° impact

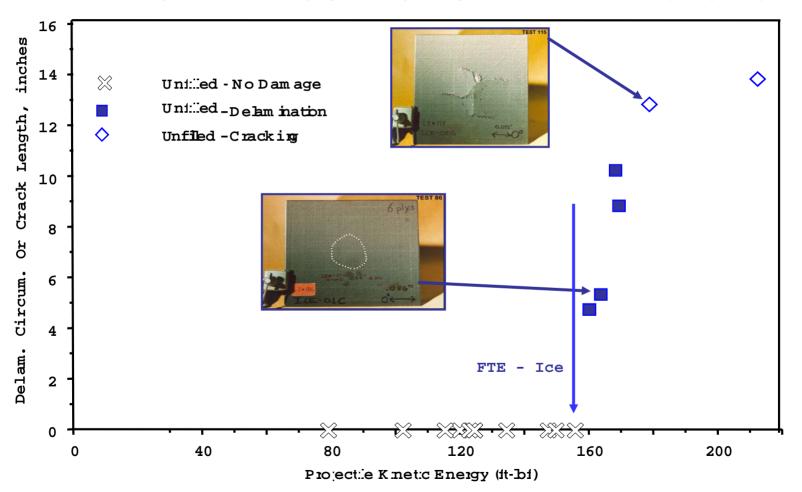
•KE_T = 335 in-lbs

•In-Flight

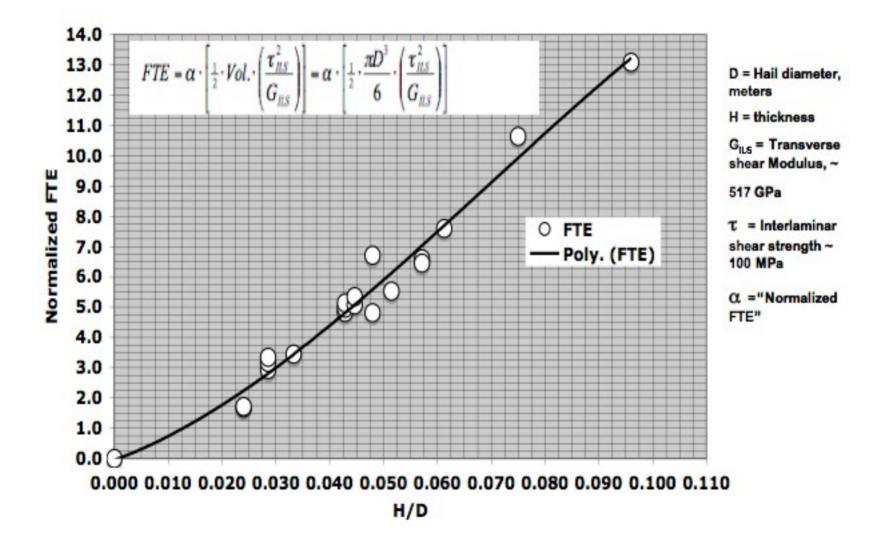

• KE(40°)~12,772 in-lbs

Probabilistic Parameters for an In-flight Hail Requirement; Primary Structure Elements

Cumulative Probability of Occurrence, %	Air vehicle Velocity, KTAS	Hail Diameter, inches		
90	375	1.76		
95	409	2.04		
99	455	2.75		


NOTE: Kinetic Energy requirements would use these values and the relative velocity calculation for the individual subassemblies.

High velocity Simulated Hail Ice Ball Impacting a Toughened Graphite-Epoxy Panel (data by H. Kim)



Hail Impact Damage Size is Dependent on Kinetic Energy Demonstration Failure Threshold Energy

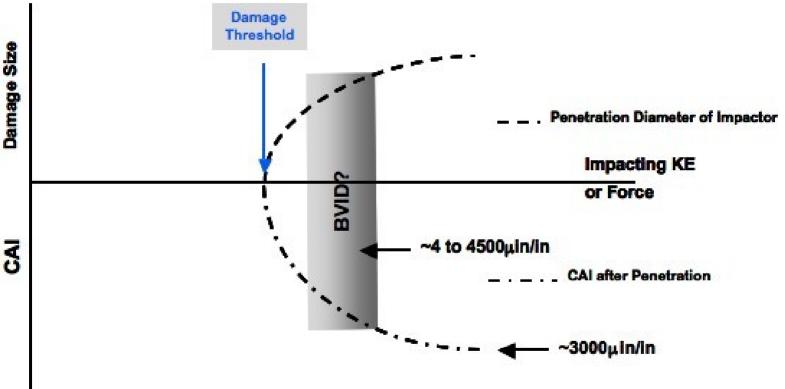
0.072 in. thick panel Woven Carbon/Epoxy Panels impacted by 1.68 in. Dia. Simulated Hail Ice, (data by H Kim)

Parametric Correlation For SHI Impact Data by H. Kim

Withstanding Thickness Estimates for Ground Hail Exposure Impacting at 90 degrees to Surface

Ground hail impact occurs at Terminal Velocities, TV, and Kinetic Energies, J,

KE (TV, J) \rightarrow FTE = α (506382) D^3

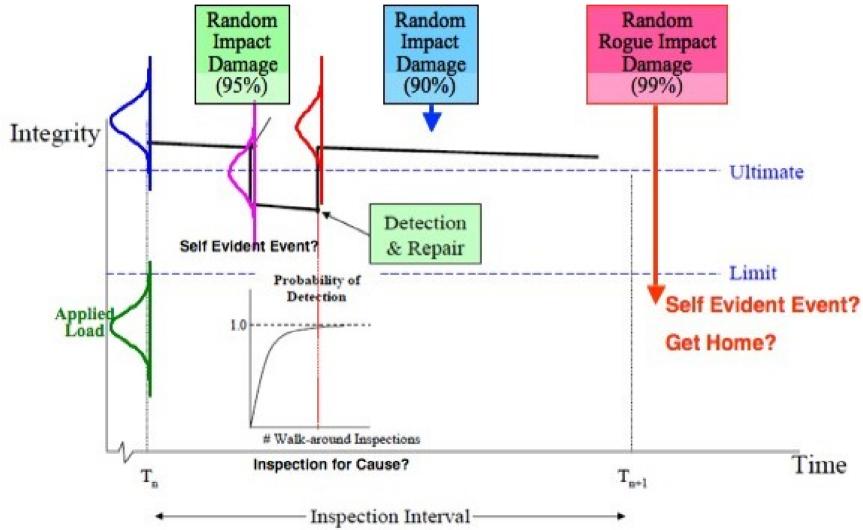

Rearranging the equation;

 α = KE (TV, J) /{506382 D³}

Using the previous table & graph the H/D ratio is defined by α Impacting | Impacting | "Normalized" Cumulative Hail Damage Probability | Diameter, Velocity, Kinetic Impacting Withstanding Kinetic (%) inches ft/Sec H/D Thickness, Energy, Joules inches Energy, a 0.038 98 2.4 100 50 0.435 0.0912 95 92 26 0.369 0.0355 0.072 2.04 90 0.318 0.0313 0.0551 1.76 85.6 14.4 ~ 50 65 2.7 0.2410.025 0.025 1.0

Current dual aisle fuselage skins ~ ECONOMIC LIMIT ~ 0.070 to 0.090 inches thick

What Metric Should the Designer Use? Is BVID a Design Parameter? What Makes Physical Sense, Damage Threshold or the Bottom of the CAI Curve?



Which Approach Recognizes the Benefits of Toughness and Provides the Basis for Continuing Airworthiness?

Self Evident Rogue Events

Impact Damage Tolerance-Management: Example of Random Discrete Threat Events

Damage Tolerance Awareness Criteria?

(Durability and Continuing Airworthiness)

- Self Evident Damage?;
 - Cracking and corrosion
 - Fail-safety; Readily detectable means that a local failure or partial failure would be apparent from in- flight or post-flight visual observations, or they would be obvious during a scheduled visual inspection conducted within the predicted safe period of unrepaired usage.

Self Evident Damaging Events;

- Bird strike, tire rupture, hail, --
- Damage Threats EXTERNAL TO AIRFRAME
 - Threat Characterization?
 - B-Allowable and/or enveloping?
 - Performance based criteria (FAA Tire rupture example)
 - Typically impact threats
- Maintenance for Cause option?

Ground Operations Concerns

- Blunt Impact with GSE & Buildings
- Hot GSE engine exhaust impinging airframe surface
 - exceeding composite in-service T_G

The FAA Has Proposes 5 Damage Detection Categories.

Historical (FAR & JSSG) Implied Risk for Quantified Damage Threats

Category 1 They are damages that may go undetected by field inspection methods (or allowable defects). Ultimate loads capability must be retained anytime (birdstrike, MIL ground-hail, tool drop & FOD). A fatigue substantiation allowing for these damages is a sort of flaw tolerant safe life demonstration including completion of ultimate loads capability

<u>Category 1 90% KE Level (Damage Threshold?)</u>

• Category 2 : Damage detected by field inspection at specified intervals. They are the so-called Visible Impact Damage (VID). A reliable inspection interval must be demonstrated and Limit Load capability retained.

Category 2 90% or 95%KE Level (Self Evident Event?)

(Minimum Period of Unrepaired Service Usage?)

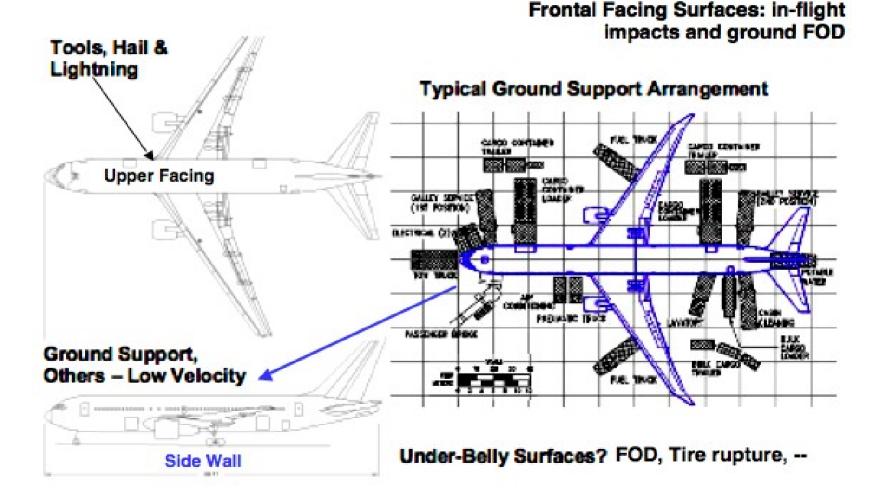
• Category 3 : Obvious damage detectable within a few flights. They are damages obvious to operations in a "Walk Around" inspection or due to a loss of form/fit/function. Quick detection must be demonstrated and Limit Loads capability retained.

Category 3 95% KE Level (Self Evident Event?)

• Category 4 : Discrete source damage known by pilot to limit flight maneuvers. They are damage in flight from events that are obvious to pilot (rotor burst, birdstrike, lightning, in-flight hail). <u>"Get home"</u> capability must be retained as defined for discrete source events.

Category 4 99% KE Level (Self Evident Event?)

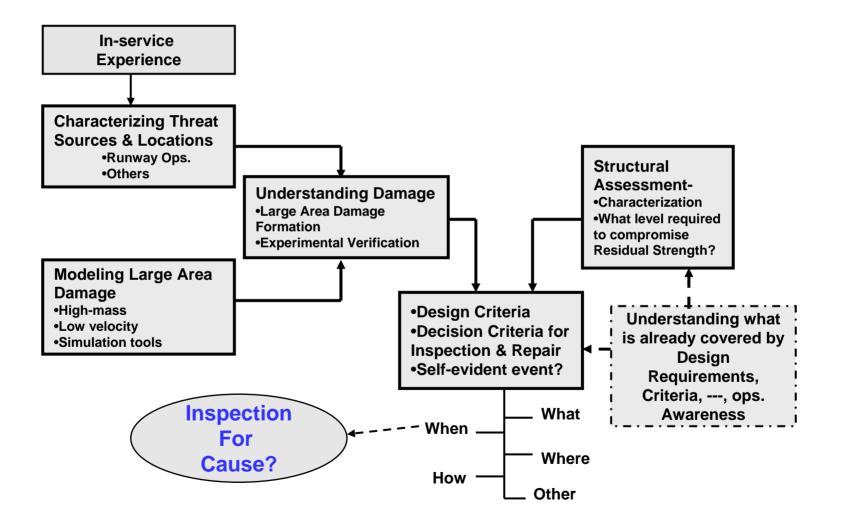
• Category 5 : Severe damage created by anomalous ground or flight events. They are damages due to RARE SERVICE EVENTS or to an extent beyond what is considered in design. Collision with a vehicle on ground, or severe ground hail exposure, are typical of such events. Immediate reporting is required with new substantiation.


Lightning Damage?

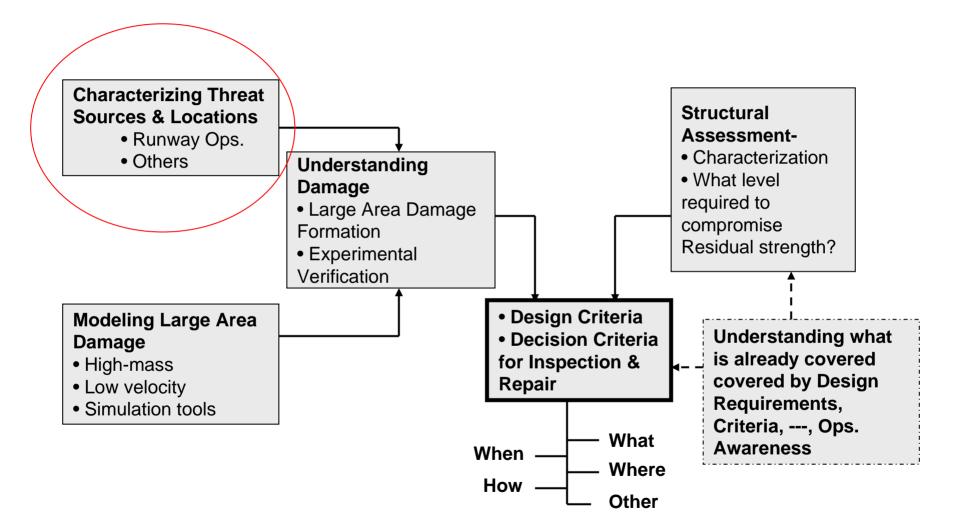
- Rogue Event
- Inspection and maintenance for cause?
 - Structural integrity; Damage Tolerance
 - Damage threshold?
 - Punch through criteria?
 - Electo-magnetic integrity
 - Equivalent to local thermal spike or local impact?

Overlapping AIR WORTHINESS MANAGEMENT:

- Preventive design
- Maintenance for Cause (discrete source damage, JSSG) when possible:
 - Bird strike, FOD, Hail Ice (in-flight & on-ground), Tire rupture (on-ground, inflight), Lightning, & --- (Threats characterized, structures zoned, cause and effect --)
 - Individual aircraft focus
 - Self evident damaging event
 - Visually self evident damage?
 - Inspections & maintenance (What, When, Where, How?) provides a focused and timely process
- Operations Focused Inspection, management of other damage classes:
 - Other Potential Failure modes:
 - Load induced delamination (maybe heavy landings, --)
 - Thermal induced delamination (GSE exhaust, --)
 - Corrosion & Other
 - Anomalous events (Blunt Impacts, ---)
 - Individual aircraft focus
 - Damage Categories
- General inspection at heavy maintenance (all aircraft)
 - Defined usage or age interval (maybe 10 years)
 - Protection from hidden damage, unknown events, ---
 - Provides data for updating individual aircraft air worthiness management.
- Balancing Risk

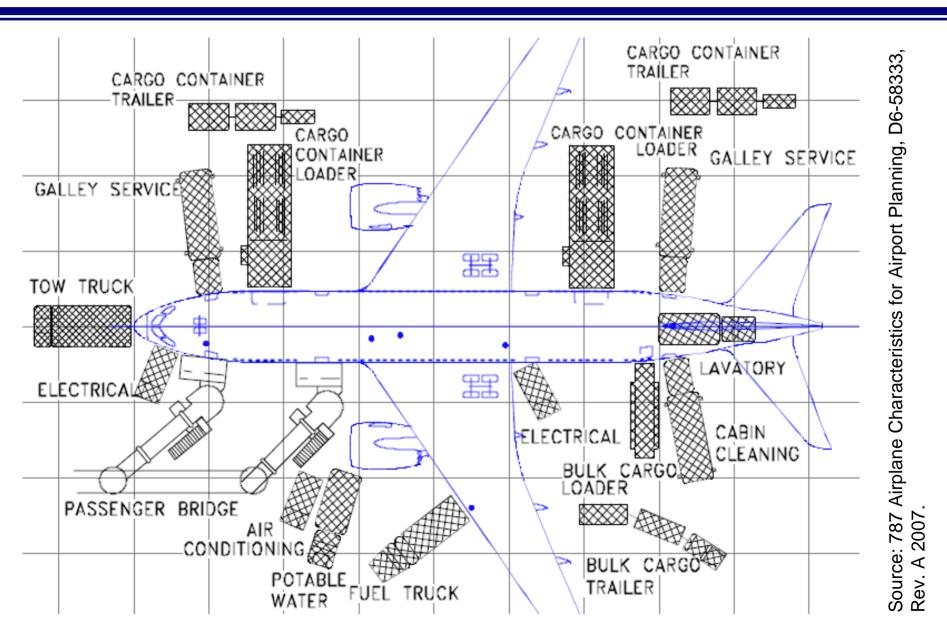

Typical A/C plan form: Different Exposed Areas and Impact Threats

Blunt Impact


- Low velocity, high mass large contact area event, i.e., "Blunt impact" (e.g., ground vehicle impact, GSE) where significant damage may not be clearly visible:
 - representing 30-40% plus of aircraft damage
 - IATA statistics suggest 767 class aircraft experiencing about 1.5 ground impact events per aircraft per year.
 - ground impact frequency is an OPERATIONAL ISSUE independent of airframe construction
 - typical GSE impact could involve a vehicle of about 6,000 lbs traveling at 3 to 5 miles per hour (4.8 to 8 kilometers per hour) distributed across an area of 1 to 4 square feet (0.1 to 0.37) square meters.

Logic for Low Velocity High-mass Large Area,"Blunt," Impact

Roadmap for Low Velocity High-Mass Wide-Area "Blunt" Impact Project



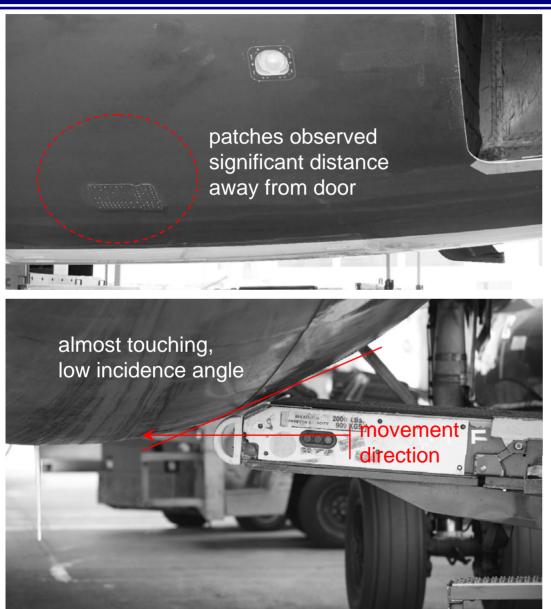
Inspection for Cause?

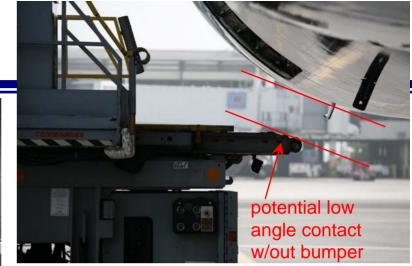
Ground Equipment Adjacency

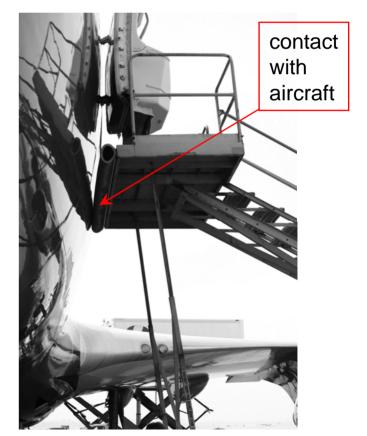
- LAX observation March 19, 2009
 - direct observation of ground operations at United Airlines ramps
 - » quantitative information extracted from photos, video documentation
 - » discussion with personnel
 - much thanks to Eric Chesmar and United Airlines for hosting activity

LAX Observation

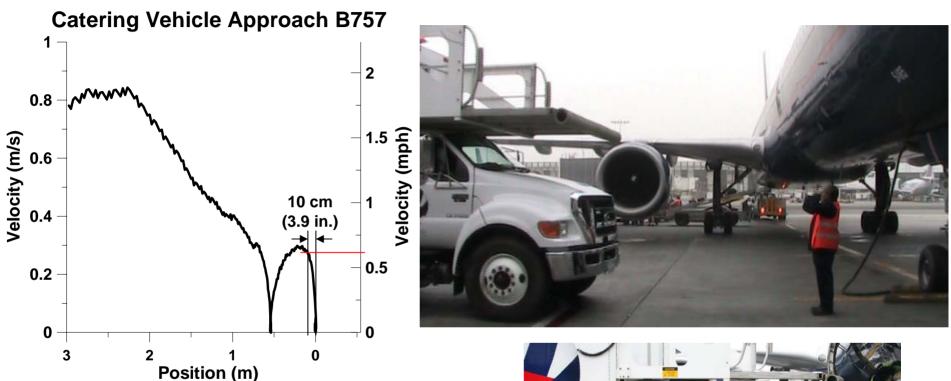
- Focus on Ground Service Equipment (GSE)
 - major source of damage
 - damage anticipated near doors and access panels
 - also observed further away in unreinforced areas
- Other events possible, such as:
 - maintenance equipment or unattended GSE blown into the aircraft
 - aircraft settling onto equipment during the fueling and passenger loading
 - luggage cart can impact a belt loader, forcing contact between the belt loader and aircraft
- Different aircraft size/geometry influences impact sources
 - small aircraft
 - » at risk of contact with lower GSE
 - » more crowded at gate
 - larger aircraft have difficult docking angles (e.g., at aft door); risk for scraping body fairing



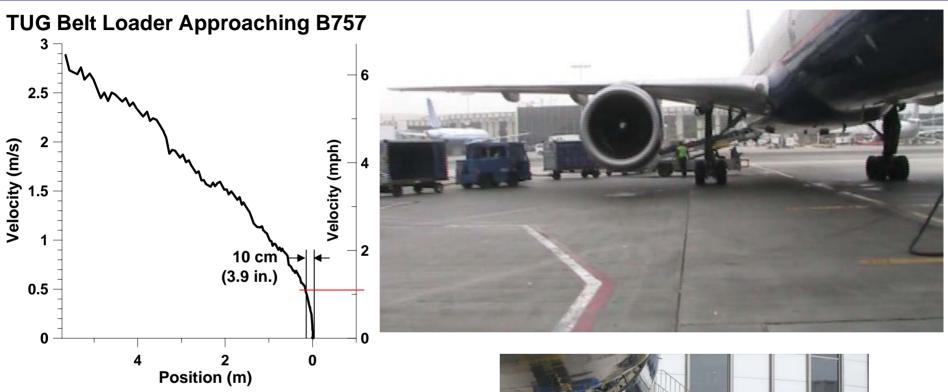



GSE bumpers and walkway bumper

Additional Observations



Video Analysis: Catering Truck Approach

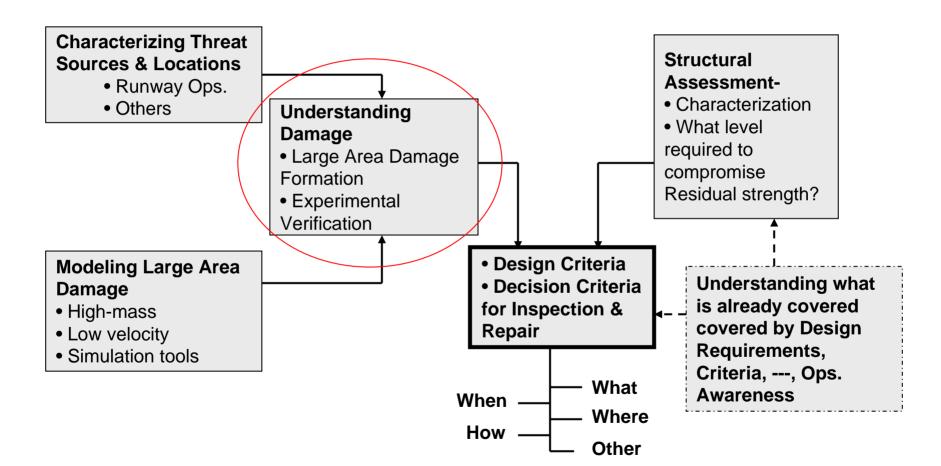

Catering Vehicle Weight: 5000 lb (2270 kg) Velocity of ~0.25 m/s within 10 cm of stopping Kinetic Energy:

- 284 J at 0.5 m/s (209 ft-lbf at 1.12 mph)
- 71 J at 0.25 m/s (52 ft-lbf at 0.56 mph)

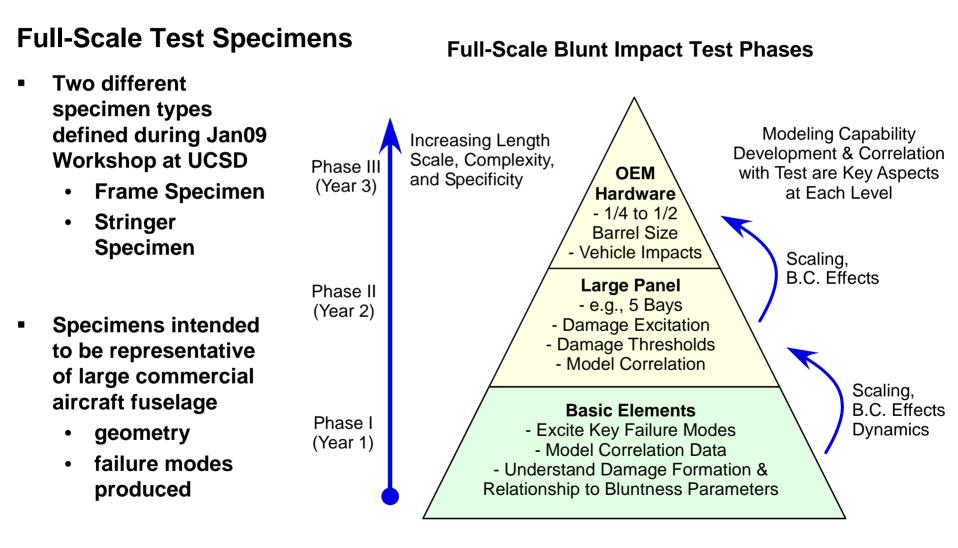
Video Analysis: TUG Belt Loader Approach

TUG Vehicle Weight: 6680 lb (3030 kg)

Velocities as high as 2 mph are realistic within close proximity of the aircraft


Kinetic Energy:

- 1515 J at 1 m/s (1117 ft-lbf at 2.24 mph)
- 379 J at 0.5 m/s (280 ft-lbf at 1.12 mph)

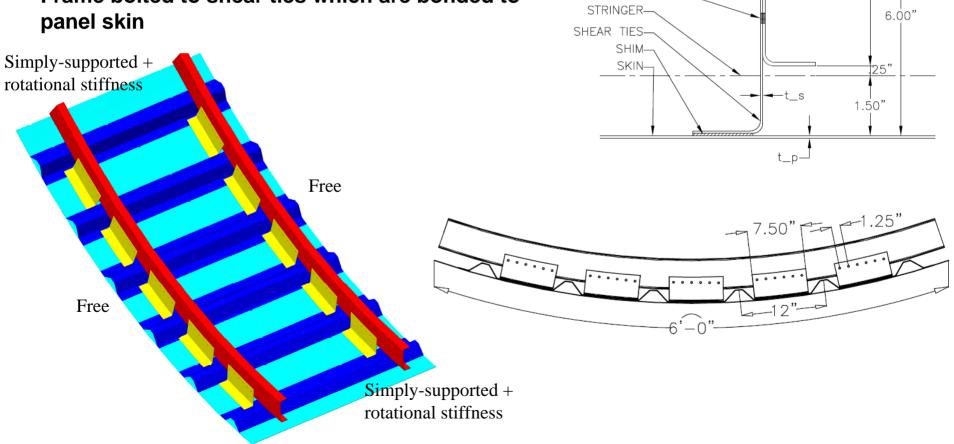

Roadmap for Low Velocity High-Mass Wide-Area "Blunt" Impact Project

Inspection for Cause?

Frame Specimens

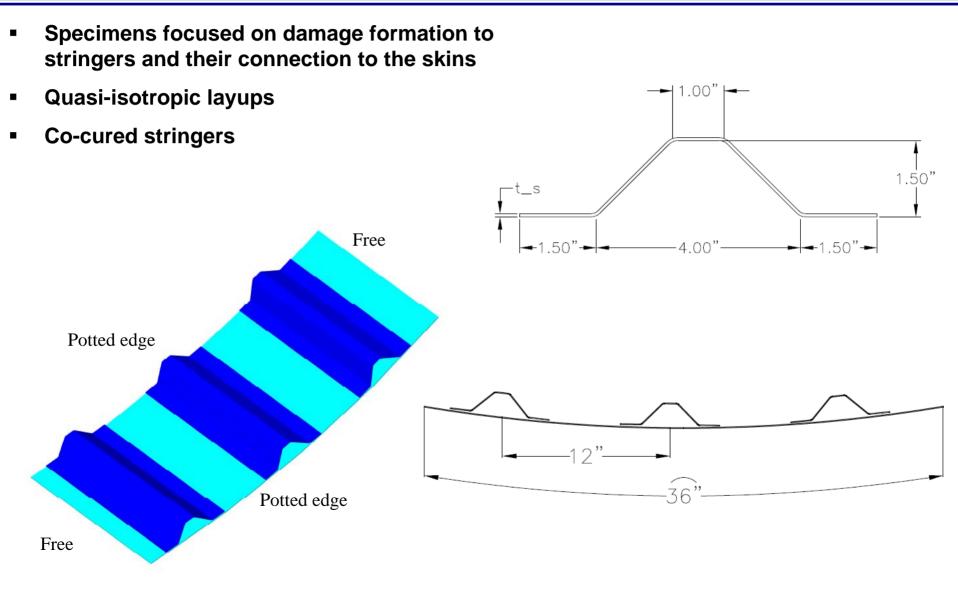
1.00"

14/

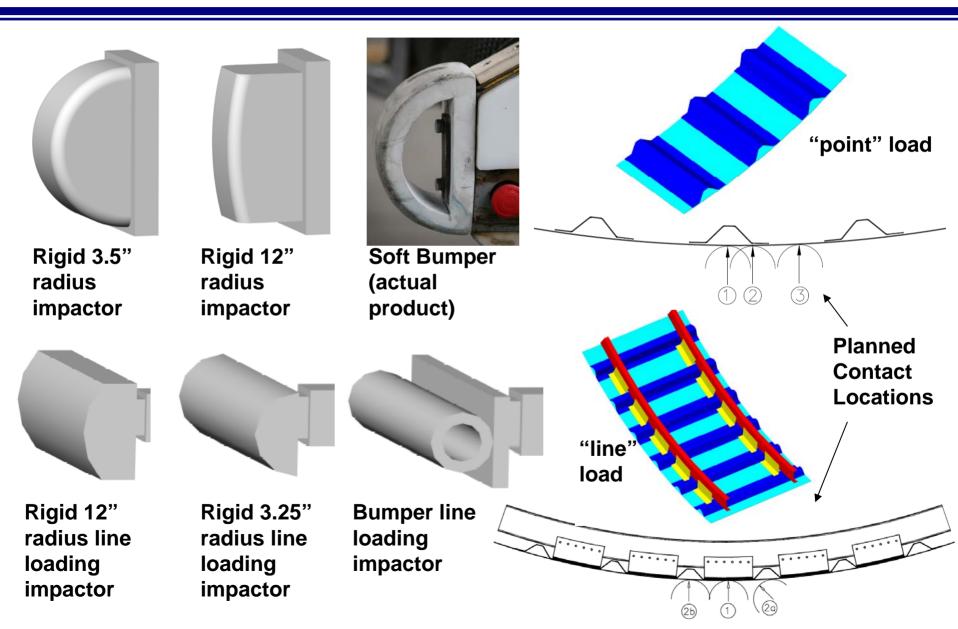

4.25"

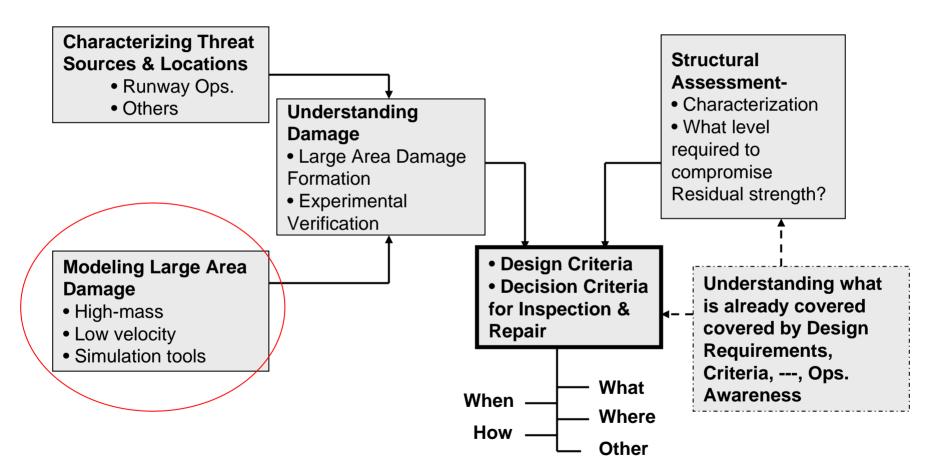
FRAME-

BOLT HOLES

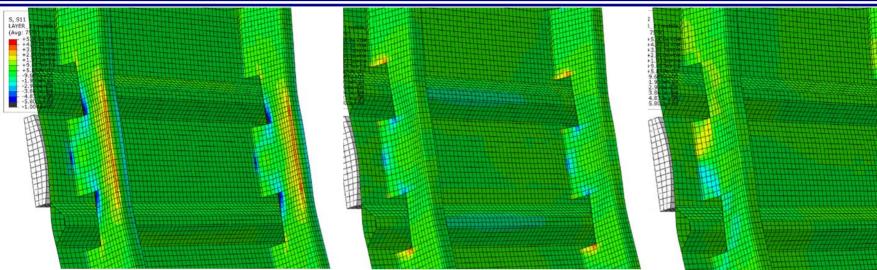

<u>1</u>"

- Specimens primarily focused on damage development to circumferential frame members and their connection to the skins
- **Quasi-isotropic layups**
- Frame bolted to shear ties which are bonded to panel skin


Stringer Specimens

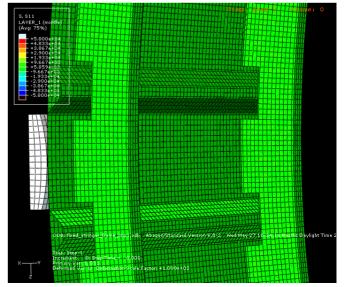


Impactor Geometries



Inspection for Cause?

FEA of Frame Specimens

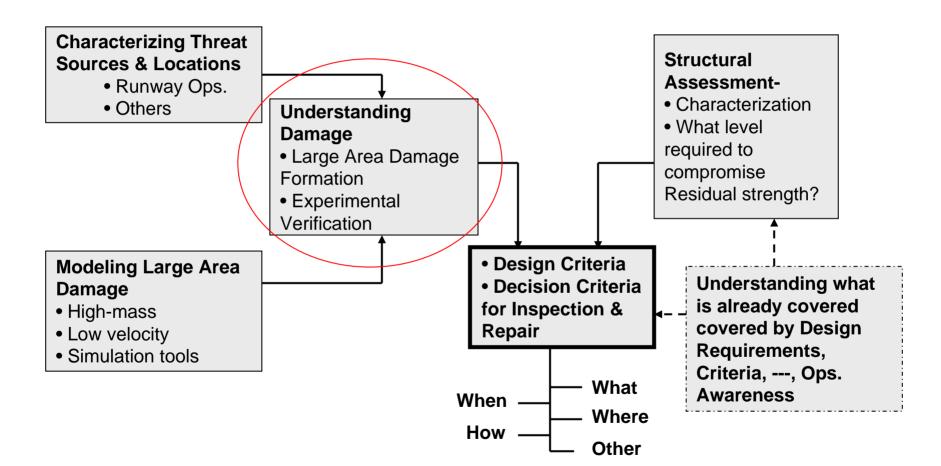


S11 stress in the frame direction

S22 stress in stringer direction

S12 shear stress

- 12" radius rigid line loading at 0.5" indentation depth
- Stresses plotted at the midplane
- Peak bending stress in frame (S11)
- Large tensile stresses (S22) exists in shear ties located <u>away</u> from impact location – pull-off loading
- Warpage/rotation of frames (open section)


Summary of Activities

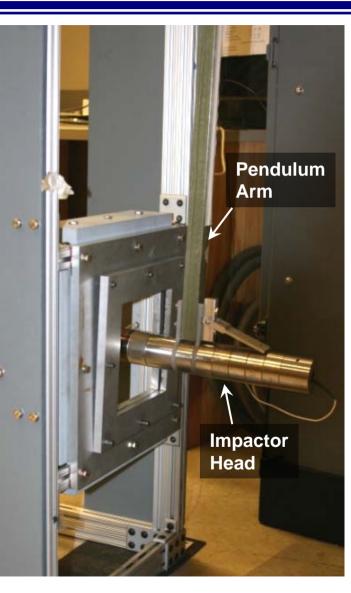
- Blunt Impact Workshop at UCSD in La Jolla, CA held on Jan. 23, 2009
 - 40 participants from OEM, airlines, agency, industry, academia
 - summary document posted to website: <u>http://csrl.ucsd.edu/UCSDbluntimpact/</u>
 - » major source of damage (30-40%) is from ground service equipment, during pushback
 - » frequency of occurrence for composite a/c expected to be same as for metal
 - » need exists for basic experiments and modeling methods
- LAX observation March 19, 2009
 - direct observation of ground operations at UAL ramps
 - » quantitative information extracted from photos, video documentation
 - much thanks to Eric Chesmar and United Airlines for hosting activity
- Specimen design and test definition
 - Test plan (1st ver) issued April 23, 2009 posted on blunt impact website
 - Working Meeting planned for June 29-July 1, 2009 at UCSD
- Lab scale impact experiments
 - basic investigation of effects of impactor radius on localized damage development

Roadmap for Low Velocity High-Mass Wide-Area "Blunt" Impact Project

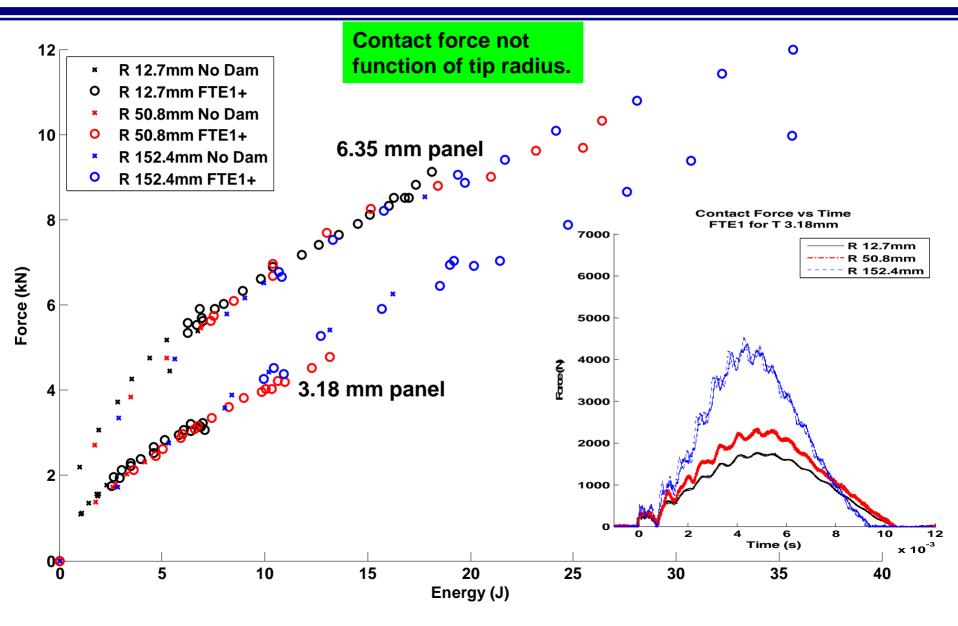
Inspection for Cause?

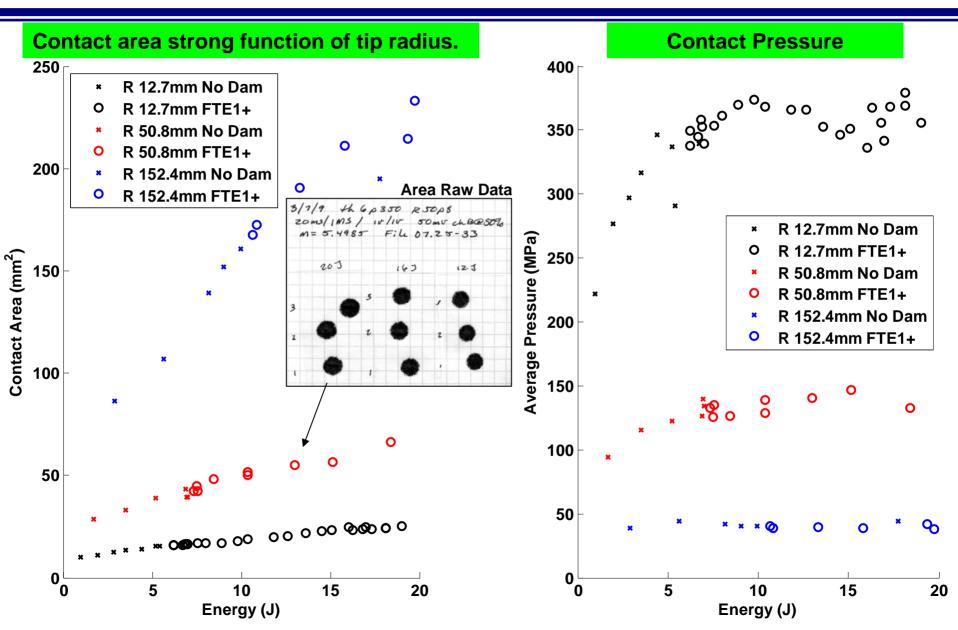
Basic Study: Lab Scale Blunt Impact Experiments

- Objectives:
 - Investigate impact damage formation as function of tip radius (i.e., bluntness)
 - Establish database for model development
- Low Velocity Pendulum Impact System
 - instrumented tip, 5.5 kg mass, 150 J capacity


Test Matrix:

Glass/Epoxy	Number of panels tested for tip radius			
Panel Thk (mm)	12.7mm	50.8mm	152.4mm	
3.18	9	10	8	
6.35	9	7	7	




Peak Contact Force

Contact Area & Pressure

Lab Scale Impact Tests Summary

Damage Initiation (Delam.) Threshold

FTE1 for ea	FTE1 for each panel thickness T, impactor tip radius R				
	R 12.7mm	R 50.8mm	R 152.4mm		
T 3.18mm	2.44J	4.44J	10.3J		
T 6.35mm	6.47J	7.45J	10.8J		

Cracking/Fiber Rupture Threshold

FTE2 for ea	ch panel thickn	ess T, impactor	tip radius R	
	R 12.7mm	R 50.8mm	R 152.4mm	
T 3.18mm	7.04J	10.3J	N/A	
T 6.35mm	17.0J	25.5J	N/A	> !

Overall Conclusions

- Blunter impactor requires significantly higher energy impact to initiate damage – must hit harder
 - higher total force (despite lower contact pressure)
 - » more internal deflection with higher energy
 - » possible to produce more internal damage?
 - LOWER contact pressure developed less propensity for surface marking?
- FEA of blunt impact test specimens shows
 - large internal stress develops for small indentation (0.25 to 0.5 in.)
 - high stresses in frame, shear ties
 - » pull-off loading in shear ties away from impact location

UCSD Project on Blunt Impact

- Project funding from FAA with cost-share from team members
 - part of JAMS COE technical monitor is Curt Davies
 - teaming: JC Halpin, Bombardier, Cytec, San Diego Composites, Sandia, Jack Bish
 - ice and other high velocity impacts are also part of this program
- Overarching Objectives of Blunt Impact Project (Multi-Year Effort)
 - Identify which blunt impact scenarios are:
 - » commonly occurring
 - » of major concern to airlines, OEM
 - Develop Methodology for Blunt Impact Threat Characterization and Prediction
 - » identification of key phenomena and parameters that are related to damage formation
 - how affected by bluntness?
 - failure initiation thresholds
 - » focus: what conditions relate to <u>development of massive damage</u> occurring <u>with minimal or no visual detectability</u>?
 - Damage tolerance assessment of blunt impact damaged structures
 - » loss of limit load capability?
 - » ID structural configurations and details more prone to this loss of capability

Project Timeline (Year 1)

- January 23, 2009 Blunt Impact Workshop
- February to May design test specimen (including stress predictions)
- June 29 to July 1, 2009 Working Meeting
 - review UCSD test specimen design
 - detailed test plan development
 - feedback from industry & agencies on direction of project
 - more info at: <u>http://csrl.ucsd.edu/UCSDbluntimpact/</u>
- June & July test fixtures and manuf. tooling design, material acquisition
 - Cytec will provide prepreg and adhesive
- July & August fabrication
- late August conduct stringer panel tests
- September & October conduct frame panel tests

For more information, contact Hyonny Kim at hyonny@ucsd.edu